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Abstract

We suggest a Schauder basis in Banach spaces of smooth functions and traces of smooth functions on
Cantor-type sets. In the construction, local Taylor expansions of functions are used.
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1. Introduction

We consider the basis problem for Banach spaces of differentiable functions. It is not
difficult to present a (Schauder) basis in the space C p

[0, 1]. Indeed, by means of the operator
T : C[0, 1] −→ C p

F [0, 1] : f →
 x

0

 x1
0 · · ·

 x p−1
0 f (x p)dx p · · · dx1 we have an isomorphism

C p
[0, 1] ≃ Rp

⊕C[0, 1]. Here C p
F [0, 1] denotes the subspace of functions that are flat at 0, that

is such that g(k)(0) = 0 for 0 ≤ k ≤ p − 1. Therefore, any Schauder basis in C[0, 1] gives a
corresponding basis in the space C p

[0, 1].
For other compact sets K , the question about a basis in the space C p(K ) may be much

more difficult. For example, one of the basis problems of Banach concerning the space C1
[0, 1]2

(see [1, p.147]) was solved only 37 years later by Ciesielski in [3] and Schonefeld in [14]. Even
after this, a generalization to the case C p

[0, 1]2 with p ≥ 2 was not trivial (see [15] for details).
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Schauder bases in the spaces C p
[0, 1]q were suggested independently by Ciesielski and Domsta

in [4] and by Schonefeld in [15]. We should notice that two main approaches in the construction
of bases were presented in these papers. Schonefeld’s system is interpolating basis, while the
basis constructed in [4] is orthonormal, but not interpolating.

Mitjagin established in [13, Th.3] that if M1 and M2 are n-dimensional smooth manifolds with
or without boundary, then the spaces C p(M1) and C p(M2) are isomorphic. This result essentially
enlarges the class of compact sets K with a basis in the space C p(K ), but it cannot be applied to
compact sets with infinitely many components, in particular for nontrivial totally disconnected
sets.

Jonsson considered in [9] triangulations of compact sets in R and constructed an
interpolating Schauder basis in the space C p(K ) provided the compact set K admits a sequence
of regular triangulations. By Theorem 1 in [9], the last condition is valid if and only if K
preserves the so-called Local Markov Inequality, which in turn means that K is uniformly perfect
[11, Section 2.2]. On the other hand, the space considered in [9] was actually E p(K ), that is the
Whitney space of functions on K extendable to functions from C p(R), but equipped with the
norm of the space C p(K ). It should be noted that, in general, the space E p(K ) is not complete
in this norm (see [9, p.54] and Section 3).

Here we consider the case of a Cantor-type set K and present explicitly a Schauder basis
in the Banach space C p(K ) of p times differentiable on K functions as well as in the
Whitney space E p(K ). In the construction local Taylor expansions of functions are used. In a
sense, this generalizes the basis from Haar functions in the space C(K ) for the Cantor set K
[16, Prop. 2.2.5]. Clearly, the system of monomials cannot form a basis in the space C p

[0, 1]
with p ≤ ∞, containing non-analytic functions. In our case, for a Cantor-type set K , “local
Taylor” bases are presented only in the Banach spaces E p(K ) with p <∞, but not in the Fréchet
spaces E (K ) of Whitney functions of infinite order. For the last case, a basis was suggested in [6]
by means of local Newton interpolations; see also [7] for a similar basis in C(K ). Interpolating
Schauder bases in other functional Banach spaces on fractals were given in [10]. It should be
noted that not all functional spaces possess interpolating bases [8].

2. Local Taylor expansions on Cantor-type sets

Given compact set K ⊂ R, f = ( f (k))0≤k≤n ∈
∏

0≤k≤n C(K ) and a, x ∈ K , let us consider

the formal Taylor polynomial T n
a f (x) =

∑
0≤k≤n f (k)(a)

(x−a)k

k! and the corresponding Taylor
remainder Rn

a f (x) = f (x) − T n
a f (x). In the case of perfect K , the set ( f (k)(x))0≤k≤n,x∈K is

completely defined by the values of f on K provided existence of the corresponding derivatives.
If m ≤ n and a, b, c ∈ K then trivially

T n
a ◦ T m

b = T m
b , Rn

a ◦ Rm
b = Rn

a , Rn
a ◦ T m

b = 0. (1)

Let Λ = (ls)∞s=0 be a sequence such that l0 = 1 and 0 < 2ls+1 < ls for s ∈ N0 := {0, 1, . . .}.
Let K (Λ) be the Cantor set associated with the sequence Λ that is K (Λ) =


∞

s=0 Es , where
E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals I j,s = [a j,s, b j,s] of length ls and
Es+1 is obtained by deleting the open concentric subinterval of length hs := ls−2ls+1 from each
I j,s, j = 1, 2, . . . 2s .

Let us consider the set of all left endpoints of basic intervals. Since a j,s = a2 j−1,s+1 for
j ≤ 2s , any such point has infinitely many representations in the form a j,s . We select the
representation with the minimal second subscript and call it the minimal representation. If j
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is even, then the representation a j,s is minimal for the corresponding point. Otherwise, for
j = 2q(2m + 1) + 1 > 1 we obtain a j,s = a2m+2,s−q . Clearly, a1,s = a1,0 for all s.
Therefore we have a bijection between the set of all left endpoints of basic intervals and the

set A = a1,0 ∪ (a2 j,s)
2s−1,∞
j=1,s=1.

Let us enumerate the set A by first increasing s, then j : x1 = a1,0 = 0, x2 = a2,1 =

1 − l1, x3 = a2,2 = l1 − l2, x4 = a4,2 = 1 − l2, . . . and, in general, x2s+k = a2k,s+1 for
k = 1, 2, . . . , 2s .

Let us fix p ∈ N. For s ∈ N0, j ≤ 2s and 0 ≤ k ≤ p let ek, j,s(x) = (x − a j,s)
k/k! if x ∈

K (Λ) ∩ I j,s and ek, j,s = 0 on K (Λ) otherwise. Given f = ( f (k))0≤k≤p ∈
∏

0≤k≤p C(K (Λ)),

let ξk, j,s( f ) = f (k)(a j,s) for the same values of s, j , and k as above. Clearly, for the fixed level
s, the system (ek, j,s, ξk, j,s) is biorthogonal, that is ξk, j,s(en,i,s) = δkn · δi j . In order to obtain
biorthogonality as well with regard to s, we will use the following convolution property of the
values of functionals on the basis elements (see [5, L.3.1] and [6, L.2]). Let Ii,n ⊃ I j,s−1. Then

p−
m=k

ξk,2 j,s(em, j,s−1) · ξm, j,s−1(eq,i,n) = ξk,2 j,s(eq,i,n) for all q ≤ p.

Indeed, (ek,i,n)
p
k=0, (ek, j,s−1)

p
k=0, (ek,2 j,s)

p
k=0 are three bases in the space P p(I2 j,s) of

polynomials of degree not greater than p on the interval I2 j,s . If Mr←t denotes the transition
matrix from the t-th basis to the r -th basis, then the identity above means M3←2 M2←1 = M3←1.

On the other hand, in our case, this identity is the corresponding binomial expansion:

q−
m=k

(a2 j,s − a j,s−1)
m−k

(m − k)!
·
(a j,s−1 − ai,n)q−m

(q − m)!
=

(a2 j,s − ai,n)q−k

(q − k)!
.

Here we consider summation until q since for q < m ≤ p, the terms ξm, j,s−1(eq,i,n) vanish.

We restrict our attention only to the functions (ek,1,0)
p
k=0 and (ek,2 j,s)

p,2s−1,∞

k=0, j=1,s=1
corresponding to the set A. Let us enumerate this family in the lexicographical order with respect
to the triple (s, j, k) : fn = en−1,1,0 =

1
(n−1)!

(x − x1)
n−1
· χ1,0 for n = 1, 2, . . . , p + 1.

Here and in what follows, χ j,s denotes the characteristic function of the interval I j,s . After this,
fn = en−p−2,2,1 =

1
(n−p−2)!

(x − x2)
n−p−2

· χ2,1 for n = p + 2, p + 3, . . . , 2(p + 1) and in

general, if (m − 1)(p + 1) + 1 ≤ n ≤ m(p + 1), then fn =
1
k! (x − xm)k

· χ2i,s+1 = ek,2i,s+1.
Here m = 2s

+ i with 1 ≤ i ≤ 2s and k = n − (m − 1)(p + 1) − 1. We see that all functions
of the type 1

k! (x − xm)k
· χ2i,s+1 with 0 ≤ k ≤ p and m = 2s

+ i ∈ N are included into the
sequence ( fn)∞n=1.

For the same values of parameters as above, we define the functionals ηk,1,0 = ξk,1,0 for
k = 0, 1, . . . , p and

ηk,2 j,s = ξk,2 j,s −

p−
m=k

ξk,2 j,s(em, j,s−1) · ξm, j,s−1

for s ∈ N, j = 1, 2, . . . , 2s−1, and k = 0, 1, . . . , p. In what follows, we will use the
minimal representations of the points a j,s and the corresponding functionals ξm, j,s . For example,
ηk,2,s = ξk,2,s−

∑p
m=k ξk,2,s(em,1,0) ·ξm,1,0. This agreement is justified by the fact that the value

ξm, j,s( f ) = f (m)(a j,s) does not depend on the representation of the point a j,s and the functions
em, j,s−1, em,r,s−q coincide on the interval I2 j,s if a j,s−1 = ar,s−q .
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The crucial point of the construction is that the functionals ηk,2 j,s are biorthogonal, not only
to all elements (ek,2 j,s−1)

p
k=0, but also, by the convolution property, to all (ek,2i,n)

p
k=0 with

n = 0, 1, . . . , s − 2 and i = 1, 2, . . . , 2n−1. In addition, the functional ηk,2 j,s takes zero value at
all elements (ek,2i,n)

p
k=0 with n ≥ s, except ek,2 j,s , where it equals 1.

In the same lexicographical order as above, we arrange all functionals (ηk,1,0)
p
k=0 and

(ηk,2 j,s)
p,2s−1,∞

k=0, j=1,s=1 into the sequence (ηn)∞n=1.

Our next goal is to express the sum SN ( f ) :=
∑N

n=1 ηn( f ) · fn in terms of the Taylor
polynomials of the function f . Clearly, SN ( f ) = T N−1

0 f for 1 ≤ N ≤ p + 1.
Suppose p + 2 ≤ N ≤ 2(p + 1). Then SN ( f ) = T p

0 f on I1,1. On the inter-
val I2,1, we obtain SN ( f ) = T p

0 f +
∑N

n=p+2 ηn−p−2,2,1( f ) · en−p−2,2,1. For the sec-

ond term, we have
∑N−p−2

k=0


ξk,2,1( f )−

∑p
m=k ξk,2,1(em,1,0) · ξm,1,0( f )

 1
k! (x − a2,1)

k
=∑N−p−2

k=0


f (k)(a2,1)−

∑p
m=k

1
(m−k)!

am−k
2,1 · f (m)(0)


1
k! (x−a2,1)

k
=

∑N−p−2
k=0 (R p

0 f )(k)(a2,1)
1
k!

(x − a2,1)
k
= T N−p−2

a2,1 (R p
0 f ).

Therefore, SN ( f ) = T p
0 f on I1,1 and SN ( f ) = T p

0 f + T N−p−2
a2,1 (R p

0 f ) on I2,1. Particularly,

S2p+2( f ) = T p
0 f + T p

a2,1(R p
0 f ) = T p

a2,1 f , by (1). In addition, S(k)
N ( f )(a2,1) = f (k)(a2,1) for

0 ≤ k ≤ N − p − 2, as is easy to check.
Continuing in this way, the values 2p + 3 ≤ N ≤ 3(p + 1) correspond to the passage on the

interval I2,2 from the polynomial T p
0 f to the polynomial T p

a2,2 f and the values 3p + 4 ≤ N ≤
4(p + 1) in turn transform T p

a2,1 f on I4,2 into T p
a4,2 f .

By the same argument, S2s (p+1)( f ) = T p
a j,s f on I j,s for 1 ≤ j ≤ 2s and if j with 0 ≤ j < 2s

is fixed, then the values N = 2s(p+ 1)+ j (p+ 1)+m + 1 with 0 ≤ m ≤ p transform T p
a j+1,s f

on I2 j+2,s+1 into T p
a2 j+2,s+1 f .

Combining all considerations of this section yields the following result:

Lemma 1. The system ( fn, ηn)∞n=1 is biorthogonal. Given f = ( f (k))0≤k≤p ∈
∏

0≤k≤p
C(K (Λ)) and N = 2s(p + 1) + j (p + 1) + m + 1 with s ∈ N0, 0 ≤ j < 2s , and 0 ≤ m ≤ p
we have SN ( f ) = T p

ak,s+1 f on Ik,s+1 with k = 1, 2, . . . , 2 j + 1, SN ( f ) = T p
ak,s f on Ik,s with

k = j + 2, j + 3, . . . , 2s , and SN ( f ) = T p
a j+1,s f + T m

a2 j+2,s+1
(R p

a j+1,s f ) on I2 j+2,s+1.

3. Spaces of differentiable functions and their traces

Let K be a compact subset of R, p ∈ N. Then the finite product
∏

0≤k≤p C(K ) equipped with

the norm |( f (k))0≤k≤p|p = sup{| f (k)(x)| : x ∈ K , k ≤ p} is a Banach space. We will consider
its subspace C p(K ) consisting of functions on K such that for every nonisolated point x ∈ K
there exist continuous derivatives f (k)(x) of order k ≤ p defined in a usual way. If the point x is
isolated, then the set ( f (k)(x))0≤k≤p can be taken arbitrarily.

The space E p(K ) of Whitney functions of order p consists of functions from C p(K ) that are
extendable to C p

− functions on R. Due to Whitney [18],
f = ( f (k))0≤k≤p ∈ E p(K ) if

(R p
y f )(k)(x) = o(|x − y|p−k) for k ≤ p and x, y ∈ K as |x − y| → 0. (2)

The natural topology of a Banach space is given in E p(K ) by the norm

‖ f ‖p = | f |p + sup

|(R p

y f )(k)(x)| · |x − y|k−p
; x, y ∈ K , x ≠ y, k = 0, 1, . . . , p


.
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The Fréchet spaces C∞(K ) and E (K ) are obtained as the projective limits of the
corresponding sequences of spaces. Similarly, the spaces E p(K ), E (K ) can be defined for
K ⊂ Rd with d > 1.

In general, the spaces C p(K ) and C∞(K ) contain nonextendable functions and the norms
‖ f ‖p and | f |p are not equivalent on E p(K ). A compact set K ⊂ Rd is called Whitney r -regular
if it is connected by rectifiable arcs, and there exists a constant C such that σ(x, y)r

≤ C |x − y|
for all x, y ∈ K . Here σ denotes the intrinsic (or geodesic) distance in K . The case r = 1 gives
the Whitney property (P) [19]. If K is 1-regular, then C p(K ) = E p(K ) [19, T.1]. A sufficient
condition for coincidence C∞(K ) = E (K ) is r -regularity of K for some r . For an estimation of
‖ · ‖p by | · |p in this case, we refer the reader to [17, IV, 3.11] and [2].

For one-dimensional compact sets we have the following trivial result:

Proposition 1. C p(K ) = E p(K ) for 2 ≤ p ≤ ∞ if and only if K = ∪N
n=1[an, bn] with an ≤ bn

for n ≤ N.

Proof. Indeed, if K is a finite union of closed intervals, then for any C p-function on K there
exists a corresponding extension of the same smoothness, and what is more, the extension which
is analytic outside K can be chosen (see e.g. in [12, Cor.2.2.3]).

In the converse case, the complement R \ K contains infinitely many disjoint open intervals.
Therefore there exists at least one point c ∈ K which is an accumulation point of these
intervals. Let K ⊂ [a, b] with a, b ∈ K . Without loss of generality we can assume that [c, b]
contains a sequence of intervals from R \ K . Then K ⊂ K0 := [a, c] ∪ ∪∞n=1[an, bn] with
(an)∞n=1, (bn)∞n=1 ⊂ K , b1 = b, an+1 ≤ bn+1 < an, (bn+1, an) ⊂ R \ K for all n. Given
1 < p < ∞, let us take F = 0 on [a, c], F = (an − c)p on [an, bn] if an < bn . In the case
an = bn let F(an) = (an − c)p and F (k)(an) = 0 for all k > 1. Thus, F ′ ≡ 0. Then f = F |K
belongs to C∞(K ), but is not extendable to C p-functions on R because of violation of (2) for
y = c, x = an, k = 0. �

This nonextendable function can be easily approximated in | · |p by extendable functions.
Therefore, by the open mapping theorem, the following is obtained:

Corollary 1. If 1 < p < ∞ and K is not a finite union of (maybe degenerated) segments, then
the space (E p(K ), | · |p) is not complete. The same result is valid for (E (K ), (| · |p)

∞

p=0).

It is interesting that the case p = 1 is exceptional here.

Examples. 1. Let K = {0}∪ (2−n)∞n=1. Then C1(K ) = E 1(K ). Indeed, the function f ∈ C1(K )

is defined here by two sequences ( fn)∞n=0 and ( f ′n)∞n=0 with γn := ( fn − f0) · 2n
− f ′0 → 0

and f ′n → f ′0 as n → ∞. The second condition gives (2) with k = 1. The first condition
means (2) with k = 0, y = 0. For the remaining case x = 2−n, y = 2−m , we have
R1

y f (x) = fn − fm − f ′m(2−n
− 2−m) = γn · 2−n

− γm · 2−m
+ (2−n

− 2−m)( f ′0 − f ′m), which
is o(|2−n

− 2−m
|) as m, n→∞, since max{2−n, 2−m

} ≤ 2 · |2−n
− 2−m

|. Thus, f ∈ E 1(K ).
2. Let K = {0} ∪ (1/n)∞n=1, f


1

2m−1


= 0, f


1

2m


=

1
m
√

m
for m ∈ N, and f ′ ≡ 0 on K .

Then f ∈ C1(K ), but by the mean value theorem, there is no differentiable extension of f to R.

4. Schauder bases in the spaces C p(K (Λ)) and E p(K (Λ))

Let us show that the biorthogonal system suggested in Section 2 is a Schauder basis in both
spaces C p(K (Λ)) and E p(K (Λ)). Here, as before, p ∈ N. Given g on K (Λ), let ω(g, ·) be the
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modulus of continuity of g, that is ω(g, t) = sup{|g(x)− g(y)| : x, y ∈ K (Λ), |x− y| ≤ t}, t >

0. If x ∈ I = [a, a + ls], then for any i ≤ p we have easily

|(R p
a f )(i)(x)| < ω( f (i), ls)+ ls · 2| f |p (3)

and

|(R p
a f )(i)(x)| < 4| f |p. (4)

Lemma 2. The system ( fn, ηn)∞n=1 is a Schauder basis in the space C p(K (Λ)).

Proof. Given f ∈ C p(K (Λ)) and ε > 0, we want to find Nε with | f −SN ( f )|p ≤ ε for N ≥ Nε.
Let us take S such that for all i ≤ p we have

3 · ω( f (i), lS)+ 14 · lS · | f |p < ε. (5)

Set Nε = 2S(p+ 1). Then any N ≥ Nε has a representation in the form N = 2s(p+ 1)+ j (p+
1) + m + 1 with s ≥ S, 0 ≤ j < 2s , and 0 ≤ m ≤ p. Let us fix i ≤ p and apply Lemma 1 to
R := ( f − SN ( f ))(i)(x) for x ∈ K (Λ).

If x ∈ Ik,s+1 with k = 1, . . . , 2 j + 1, then |R| = |(R p
ak,s+1 f )(i)(x)| < ε, by (3) and (5).

If x ∈ Ik,s with k = j + 2, j + 3, . . . , 2s , then |R| = |(R p
ak,s f )(i)(x)| and the same arguments

can be used.
Suppose x ∈ I2 j+2,s+1. Then |R| ≤ |(R p

a j+1,s f )(i)(x)|+ |(T m
a2 j+2,s+1

(R p
a j+1,s f ))(i)(x)|. For the

first term we use (3). The addend vanishes if m < i . Otherwise, it is(R p
a j+1,s f )(i)(x)− (R p

a j+1,s f )(i)(a2 j+2,s+1)

−

m−
k=i+1

(R p
a j+1,s f )(k)(a2 j+2,s+1)

(x − a2 j+2,s+1)
k−i

(k − i)!

.
Here, we estimate the first and the second terms by means of (3). For the remaining sum, we use
(4):

∑m
k=i+1 · · ·

 ≤ 4| f |p
∑m

k=i+1 lk−i
s+1/(k − i)! < ls+1 · 8| f |p. Combining these we conclude

that |R| ≤ 3(ω( f (i), ls)+ ls · 2| f |p)+ ls+1 · 8| f |p. This does not exceed ε due to the choice of
S. Therefore, | f − SN ( f )|p ≤ ε for N ≥ Nε. �

The main result is given for Cantor-type sets under mild restriction:

∃C0 : ls ≤ C0 · hs, for s ∈ N0. (6)

Theorem 3. Let K (Λ) satisfy (6). Then the system ( fn, ηn)∞n=1 is a Schauder basis in the space
E p(K (Λ)).

Proof. Given f ∈ E p(K (Λ)), we show that the sequence (SN ( f )) converges to f as well in the
norm ‖·‖p. Because of Lemma 2, we only have to check that |(R p

y ( f −SN ( f )))(i)(x)|·|x−y|i−p

is uniformly small (with respect to x, y ∈ K with x ≠ y and i ≤ p) for large enough N . Fix
ε > 0. Due to the condition (2), we can take S such that

|(R p
y f )(k)(x)| < ε|x − y|p−k for k ≤ p and x, y ∈ K (Λ) with |x − y| ≤ lS . (7)

As above, let Nε = 2S(p+ 1) and N = 2s(p+ 1)+ j (p+ 1)+m + 1 with s ≥ S, 0 ≤ j < 2s ,
and 0 ≤ m ≤ p.
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For simplicity, we take the value i = 0 since the general case can be analyzed in the same
manner. We will consider different positions of x and y on K (Λ) in order to show

|R p
y ( f − SN ( f ))(x)| < Cε|x − y|p,

where the constant C does not depend on x and y. In all cases, we use the representation of
SN ( f ) given in Lemma 1.

Suppose first that x, y belong to the same interval Ik,s+1 with some k = 1, . . . , 2 j + 1. Then
( f − SN ( f ))(x) = R p

ak,s+1 f (x). From (1) it follows that R p
y ( f − SN ( f ))(x) = R p

y f (x). Here,
|x − y| ≤ ls+1, so we have the desired bound by (7).

Similar arguments apply to the case x, y ∈ Ik,s with k = j + 2, j + 3, . . . , 2s .
If x, y ∈ I2 j+2,s+1, then ( f − SN ( f ))(x) = (R p

a j+1,s f )(x) − T m
a2 j+2,s+1

(R p
a j+1,s f )(x) for

m < p and ( f − SN ( f ))(x) = (R p
a2 j+2,s+1 f )(x) for m = p. Since R p(T m) = 0 for m < p, in

both cases we get R p
y ( f − SN ( f ))(x) = R p

y f (x) with |x − y| ≤ ls and (7) can be applied once
again.

We now turn to the cases when x and y lie on different intervals. Let x ∈ Ik,s+1, y ∈
Im,s+1 with distinct k, m = 1, . . . , 2 j + 1. Then R p

y ( f − SN ( f ))(x) = R p
ak,s+1 f (x) −∑p

i=0(R p
am,s+1)

(i) f (y)(x − y)i/ i !. Here, |x − ak,s+1| ≤ ls+1, and |y − am,s+1| ≤ ls+1; thus,

applying (7) gives |R p
y ( f − SN ( f ))(x)| < ε · l p

s+1 + ε ·
∑p

i=0 l p−i
s+1 |x − y|i/ i !. Now, |x − y| ≥

hs ≥ C−1
0 ls , by hypothesis. Therefore, |R p

y ( f − SN ( f ))(x)| < C p
0 (e + 1) · ε · |x − y|p, which

establishes the desired result. Clearly, the same conclusion can be drawn for x ∈ Ik,s, y ∈ Im,s
with distinct k, m = j + 2, . . . , 2s , as well for the case when one of the points x, y belongs to
Ik,s+1 with k ≤ 2 j + 1 whereas another lies on Im,s with m = j + 2, . . . , 2s .

It remains to consider the most difficult cases: just one of the points x, y belongs
to I2 j+2,s+1. Suppose x ∈ I2 j+2,s+1. We can assume that y ∈ I2 j+1,s+1 since
other positions of y only enlarge |x − y|. Here, R p

y ( f − SN ( f ))(x) = R p
a j+1,s f (x) −

T m
a2 j+2,s+1

(R p
a j+1,s f )(x) −

∑p
i=0(R p

a2 j+1,s+1)
(i) f (y)(x − y)i/ i !. We only need to estimate

the intermediate T m since other terms can be handled in the same way as above. Now,
|T m

a2 j+2,s+1
(R p

a j+1,s f )(x)| ≤
∑m

i=0 |(R p
a j+1,s )

(i) f (a2 j+2,s+1)| |x − a2 j+2,s+1|
i/ i !. As before, we

use (7). In addition, |a2 j+2,s+1 − a j+1,s | and |x − a2 j+2,s+1| do not exceed C0|x − y|. By that
|T m

a2 j+2,s+1
(R p

a j+1,s f )(x)| ≤ C p
0 eε|x − y|p.

In the last case x ∈ I2 j+1,s+1, y ∈ I2 j+2,s+1, we have R p
y ( f − SN ( f ))(x) = R p

a j+1,s f (x) −∑p
i=0[R

p
a j+1,s f −T m

a2 j+2,s+1
(R p

a j+1,s f )](i)(y)(x− y)i/ i !. As above, it is sufficient to consider only∑p
i=0[T

m
a2 j+2,s+1

(R p
a j+1,s f )](i)(y)(x − y)i/ i ! since for other terms we have the desired bound. Of

course, the genuine summation here is until i = m. Let us consider a typical term ti of the last
sum. It equals to (x − y)i/ i ! ·

∑m
k=i (R p

a j+1,s f )(k)(y)(y − a2 j+2,s+1)
k−i/(k − i)!. Arguing as

above, we obtain |ti | ≤ |x − y|i/ i ! · ε
∑m

k=i l p−k
s lk−i

s+1/(k − i)! < eε|x − y|i l p−i
s / i !. By that,

|
∑m

i=0 ti | ≤ C p
0 e2ε|x − y|p, which completes the proof. �

Remarks. 1. One can enumerate all functions from (ek,1,0)
∞

k=0 ∪ (ek,2 j,s)
∞,2s−1,∞
k=0, j=1,s=1 and the

corresponding functionals η into a biorthogonal sequence ( fn, ηn)∞n=1 in such way that for some

increasing sequences (Np)
∞

p=0, (qp)
∞

p=0 the sum SNp ( f ) =
∑Np

n=1 ηn( f ) · fn coincides with

T
qp
a j,p f on I j,p for 1 ≤ j ≤ 2p. Yet, the sequence ( fn, ηn)∞n=1 will not have the basis property

in the space E (K (Λ)). Indeed, let F ∈ C∞[0, 1] solve the Borel problem for the sequence
(qn !l

−qn
n )∞n=0, that is F (qn)(0) = qn !l

−qn
n for n ∈ N0 and F (k)(0) = 0 for k ≠ qn . Let
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f = F |K (Λ). Then | f − SNp ( f )|0 ≥ |R
qp
0 f (lp)| ≥

∑qp
k=1 f (k)(0)lk

p/k! − | f (lp) − f (0)| >

1− | f (lp)− f (0)|. The last expression has a limit 1 as p→∞, so SN ( f ) does not converge to
f in | · |0.

For a basis in the space E (K (Λ)), see [6].
2. As concerns the paper by Jonsson [9], we note that natural triangulations of the set K (Λ)

are given by the sequence Fs = {Ii,s, 1 ≤ i ≤ 2s
}, s ≥ 0. The regularity conditions discussed

in [9] are reduced in this case to (6) and

lim inf
s→∞

ls+1

ls
> 0. (8)

Thus, provided these conditions, the expansion of f ∈ E p(K (Λ)) with respect to Jonsson’s
interpolating system converges, at least in | · |p, to f , by Proposition 2 in [9]. It is interesting to
check the corresponding convergence in topology given by the norm ‖ · ‖p. At the same time it
is essential for the proof of by Proposition 2 [9] that the diameters of neighboring triangulations
are comparable, which is (8) for Cantor-type sets. Our construction can be applied to any “small”
Cantor set with arbitrary fast decrease of the sequence (ls)∞s=0. The basis problem for the space
E p(K (Λ)) in the case of “large” Cantor set with ls/hs →∞ is open.
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