Full length article

Bases in Banach spaces of smooth functions on Cantor-type sets

A.P. Goncharov*, N. Ozfidan
Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
Received 15 April 2010; received in revised form 28 January 2011; accepted 24 May 2011
Available online 14 July 2011
Communicated by Paul Nevai

Abstract

We suggest a Schauder basis in Banach spaces of smooth functions and traces of smooth functions on Cantor-type sets. In the construction, local Taylor expansions of functions are used. (C) 2011 Elsevier Inc. All rights reserved.

Keywords: Topological bases; C^{p}-spaces; Cantor sets; Taylor expansions

1. Introduction

We consider the basis problem for Banach spaces of differentiable functions. It is not difficult to present a (Schauder) basis in the space $C^{p}[0,1]$. Indeed, by means of the operator $T: C[0,1] \longrightarrow C_{\mathcal{F}}^{p}[0,1]: f \mapsto \int_{0}^{x} \int_{0}^{x_{1}} \cdots \int_{0}^{x_{p-1}} f\left(x_{p}\right) \mathrm{d} x_{p} \cdots \mathrm{~d} x_{1}$ we have an isomorphism $C^{p}[0,1] \simeq \mathbb{R}^{p} \oplus C[0,1]$. Here $C_{\mathcal{F}}^{p}[0,1]$ denotes the subspace of functions that are flat at 0 , that is such that $g^{(k)}(0)=0$ for $0 \leq k \leq p-1$. Therefore, any Schauder basis in $C[0,1]$ gives a corresponding basis in the space $C^{p}[0,1]$.

For other compact sets K, the question about a basis in the space $C^{p}(K)$ may be much more difficult. For example, one of the basis problems of Banach concerning the space $C^{1}[0,1]^{2}$ (see [1, p.147]) was solved only 37 years later by Ciesielski in [3] and Schonefeld in [14]. Even after this, a generalization to the case $C^{p}[0,1]^{2}$ with $p \geq 2$ was not trivial (see [15] for details).

[^0]Schauder bases in the spaces $C^{p}[0,1]^{q}$ were suggested independently by Ciesielski and Domsta in [4] and by Schonefeld in [15]. We should notice that two main approaches in the construction of bases were presented in these papers. Schonefeld's system is interpolating basis, while the basis constructed in [4] is orthonormal, but not interpolating.

Mitjagin established in [13, Th.3] that if M_{1} and M_{2} are n-dimensional smooth manifolds with or without boundary, then the spaces $C^{p}\left(M_{1}\right)$ and $C^{p}\left(M_{2}\right)$ are isomorphic. This result essentially enlarges the class of compact sets K with a basis in the space $C^{p}(K)$, but it cannot be applied to compact sets with infinitely many components, in particular for nontrivial totally disconnected sets.

Jonsson considered in [9] triangulations of compact sets in \mathbb{R} and constructed an interpolating Schauder basis in the space $C^{p}(K)$ provided the compact set K admits a sequence of regular triangulations. By Theorem 1 in [9], the last condition is valid if and only if K preserves the so-called Local Markov Inequality, which in turn means that K is uniformly perfect [11, Section 2.2]. On the other hand, the space considered in [9] was actually $\mathcal{E}^{p}(K)$, that is the Whitney space of functions on K extendable to functions from $C^{p}(\mathbb{R})$, but equipped with the norm of the space $C^{p}(K)$. It should be noted that, in general, the space $\mathcal{E}^{p}(K)$ is not complete in this norm (see [9, p.54] and Section 3).

Here we consider the case of a Cantor-type set K and present explicitly a Schauder basis in the Banach space $C^{p}(K)$ of p times differentiable on K functions as well as in the Whitney space $\mathcal{E}^{p}(K)$. In the construction local Taylor expansions of functions are used. In a sense, this generalizes the basis from Haar functions in the space $C(K)$ for the Cantor set K [16, Prop. 2.2.5]. Clearly, the system of monomials cannot form a basis in the space $C^{p}[0,1]$ with $p \leq \infty$, containing non-analytic functions. In our case, for a Cantor-type set K, "local Taylor" bases are presented only in the Banach spaces $\mathcal{E}^{p}(K)$ with $p<\infty$, but not in the Fréchet spaces $\mathcal{E}(K)$ of Whitney functions of infinite order. For the last case, a basis was suggested in [6] by means of local Newton interpolations; see also [7] for a similar basis in $C(K)$. Interpolating Schauder bases in other functional Banach spaces on fractals were given in [10]. It should be noted that not all functional spaces possess interpolating bases [8].

2. Local Taylor expansions on Cantor-type sets

Given compact set $K \subset \mathbb{R}, f=\left(f^{(k)}\right)_{0 \leq k \leq n} \in \prod_{0 \leq k \leq n} C(K)$ and $a, x \in K$, let us consider the formal Taylor polynomial $T_{a}^{n} f(x)=\sum_{0 \leq k \leq n} f^{(k)}(a) \frac{(x-a)^{k}}{k!}$ and the corresponding Taylor remainder $R_{a}^{n} f(x)=f(x)-T_{a}^{n} f(x)$. In the case of perfect K, the set $\left(f^{(k)}(x)\right)_{0 \leq k \leq n, x \in K}$ is completely defined by the values of f on K provided existence of the corresponding derivatives. If $m \leq n$ and $a, b, c \in K$ then trivially

$$
\begin{equation*}
T_{a}^{n} \circ T_{b}^{m}=T_{b}^{m}, \quad R_{a}^{n} \circ R_{b}^{m}=R_{a}^{n}, \quad R_{a}^{n} \circ T_{b}^{m}=0 \tag{1}
\end{equation*}
$$

Let $\Lambda=\left(l_{s}\right)_{s=0}^{\infty}$ be a sequence such that $l_{0}=1$ and $0<2 l_{s+1}<l_{s}$ for $s \in \mathbb{N}_{0}:=\{0,1, \ldots\}$. Let $K(\Lambda)$ be the Cantor set associated with the sequence Λ that is $K(\Lambda)=\bigcap_{s=0}^{\infty} E_{s}$, where $E_{0}=I_{1,0}=[0,1], E_{s}$ is a union of 2^{s} closed basic intervals $I_{j, s}=\left[a_{j, s}, b_{j, s}\right]$ of length l_{s} and E_{s+1} is obtained by deleting the open concentric subinterval of length $h_{s}:=l_{s}-2 l_{s+1}$ from each $I_{j, s}, j=1,2, \ldots 2^{s}$.

Let us consider the set of all left endpoints of basic intervals. Since $a_{j, s}=a_{2 j-1, s+1}$ for $j \leq 2^{s}$, any such point has infinitely many representations in the form $a_{j, s}$. We select the representation with the minimal second subscript and call it the minimal representation. If j
is even, then the representation $a_{j, s}$ is minimal for the corresponding point. Otherwise, for $j=2^{q}(2 m+1)+1>1$ we obtain $a_{j, s}=a_{2 m+2, s-q}$. Clearly, $a_{1, s}=a_{1,0}$ for all s. Therefore we have a bijection between the set of all left endpoints of basic intervals and the set $A=a_{1,0} \cup\left(a_{2 j, s}\right)_{j=1, s=1}^{2^{s-1}, \infty}$.

Let us enumerate the set A by first increasing s, then $j: x_{1}=a_{1,0}=0, x_{2}=a_{2,1}=$ $1-l_{1}, x_{3}=a_{2,2}=l_{1}-l_{2}, x_{4}=a_{4,2}=1-l_{2}, \ldots$ and, in general, $x_{2^{s}+k}=a_{2 k, s+1}$ for $k=1,2, \ldots, 2^{s}$.

Let us fix $p \in \mathbb{N}$. For $s \in \mathbb{N}_{0}, j \leq 2^{s}$ and $0 \leq k \leq p$ let $e_{k, j, s}(x)=\left(x-a_{j, s}\right)^{k} / k!$ if $x \in$ $K(\Lambda) \cap I_{j, s}$ and $e_{k, j, s}=0$ on $K(\Lambda)$ otherwise. Given $f=\left(f^{(k)}\right)_{0 \leq k \leq p} \in \prod_{0 \leq k \leq p} C(K(\Lambda))$, let $\xi_{k, j, s}(f)=f^{(k)}\left(a_{j, s}\right)$ for the same values of s, j, and k as above. Clearly, for the fixed level s, the system ($e_{k, j, s}, \xi_{k, j, s}$) is biorthogonal, that is $\xi_{k, j, s}\left(e_{n, i, s}\right)=\delta_{k n} \cdot \delta_{i j}$. In order to obtain biorthogonality as well with regard to s, we will use the following convolution property of the values of functionals on the basis elements (see [5, L.3.1] and [6, L.2]). Let $I_{i, n} \supset I_{j, s-1}$. Then

$$
\sum_{m=k}^{p} \xi_{k, 2 j, s}\left(e_{m, j, s-1}\right) \cdot \xi_{m, j, s-1}\left(e_{q, i, n}\right)=\xi_{k, 2 j, s}\left(e_{q, i, n}\right) \quad \text { for all } q \leq p
$$

Indeed, $\left(e_{k, i, n}\right)_{k=0}^{p},\left(e_{k, j, s-1}\right)_{k=0}^{p},\left(e_{k, 2 j, s}\right)_{k=0}^{p}$ are three bases in the space $\mathcal{P}_{p}\left(I_{2 j, s}\right)$ of polynomials of degree not greater than p on the interval $I_{2 j, s}$. If $M_{r \leftarrow t}$ denotes the transition matrix from the t-th basis to the r-th basis, then the identity above means $M_{3 \leftarrow 2} M_{2 \leftarrow 1}=M_{3 \leftarrow 1}$.

On the other hand, in our case, this identity is the corresponding binomial expansion:

$$
\sum_{m=k}^{q} \frac{\left(a_{2 j, s}-a_{j, s-1}\right)^{m-k}}{(m-k)!} \cdot \frac{\left(a_{j, s-1}-a_{i, n}\right)^{q-m}}{(q-m)!}=\frac{\left(a_{2 j, s}-a_{i, n}\right)^{q-k}}{(q-k)!}
$$

Here we consider summation until q since for $q<m \leq p$, the terms $\xi_{m, j, s-1}\left(e_{q, i, n}\right)$ vanish.
We restrict our attention only to the functions $\left(e_{k, 1,0}\right)_{k=0}^{p}$ and $\left(e_{k, 2 j, s}\right)_{k=0, j=1, s=1}^{p, 2^{s-1}, \infty}$ corresponding to the set A. Let us enumerate this family in the lexicographical order with respect to the triple $(s, j, k): f_{n}=e_{n-1,1,0}=\frac{1}{(n-1)!}\left(x-x_{1}\right)^{n-1} \cdot \chi_{1,0}$ for $n=1,2, \ldots, p+1$. Here and in what follows, $\chi_{j, s}$ denotes the characteristic function of the interval $I_{j, s}$. After this, $f_{n}=e_{n-p-2,2,1}=\frac{1}{(n-p-2)!}\left(x-x_{2}\right)^{n-p-2} \cdot \chi_{2,1}$ for $n=p+2, p+3, \ldots, 2(p+1)$ and in general, if $(m-1)(p+1)+1 \leq n \leq m(p+1)$, then $f_{n}=\frac{1}{k!}\left(x-x_{m}\right)^{k} \cdot \chi_{2 i, s+1}=e_{k, 2 i, s+1}$. Here $m=2^{s}+i$ with $1 \leq i \leq 2^{s}$ and $k=n-(m-1)(p+1)-1$. We see that all functions of the type $\frac{1}{k!}\left(x-x_{m}\right)^{k} \cdot \chi_{2 i, s+1}$ with $0 \leq k \leq p$ and $m=2^{s}+i \in \mathbb{N}$ are included into the sequence $\left(f_{n}\right)_{n=1}^{\infty}$.

For the same values of parameters as above, we define the functionals $\eta_{k, 1,0}=\xi_{k, 1,0}$ for $k=0,1, \ldots, p$ and

$$
\eta_{k, 2 j, s}=\xi_{k, 2 j, s}-\sum_{m=k}^{p} \xi_{k, 2 j, s}\left(e_{m, j, s-1}\right) \cdot \xi_{m, j, s-1}
$$

for $s \in \mathbb{N}, j=1,2, \ldots, 2^{s-1}$, and $k=0,1, \ldots, p$. In what follows, we will use the minimal representations of the points $a_{j, s}$ and the corresponding functionals $\xi_{m, j, s}$. For example, $\eta_{k, 2, s}=\xi_{k, 2, s}-\sum_{m=k}^{p} \xi_{k, 2, s}\left(e_{m, 1,0}\right) \cdot \xi_{m, 1,0}$. This agreement is justified by the fact that the value $\xi_{m, j, s}(f)=f^{(m)}\left(a_{j, s}\right)$ does not depend on the representation of the point $a_{j, s}$ and the functions $e_{m, j, s-1}, e_{m, r, s-q}$ coincide on the interval $I_{2 j, s}$ if $a_{j, s-1}=a_{r, s-q}$.

The crucial point of the construction is that the functionals $\eta_{k, 2 j, s}$ are biorthogonal, not only to all elements $\left(e_{k, 2 j, s-1}\right)_{k=0}^{p}$, but also, by the convolution property, to all $\left(e_{k, 2 i, n}\right)_{k=0}^{p}$ with $n=0,1, \ldots, s-2$ and $i=1,2, \ldots, 2^{n-1}$. In addition, the functional $\eta_{k, 2 j, s}$ takes zero value at all elements $\left(e_{k, 2 i, n}\right)_{k=0}^{p}$ with $n \geq s$, except $e_{k, 2 j, s}$, where it equals 1 .

In the same lexicographical order as above, we arrange all functionals $\left(\eta_{k, 1,0}\right)_{k=0}^{p}$ and $\left(\eta_{k, 2 j, s}\right)_{k=0, j=1, s=1}^{p, 2^{s-1}, \infty}$ into the sequence $\left(\eta_{n}\right)_{n=1}^{\infty}$.

Our next goal is to express the sum $S_{N}(f):=\sum_{n=1}^{N} \eta_{n}(f) \cdot f_{n}$ in terms of the Taylor polynomials of the function f. Clearly, $S_{N}(f)=T_{0}^{N-1} f$ for $1 \leq N \leq p+1$.

Suppose $p+2 \leq N \leq 2(p+1)$. Then $S_{N}(f)=T_{0}^{p} f$ on $I_{1,1}$. On the interval $I_{2,1}$, we obtain $\bar{S}_{N}(f)=T_{0}^{p} f+\sum_{n=p+2}^{N} \eta_{n-p-2,2,1}(f) \cdot e_{n-p-2,2,1}$. For the second term, we have $\sum_{k=0}^{N-p-2}\left[\xi_{k, 2,1}(f)-\sum_{m=k}^{p} \xi_{k, 2,1}\left(e_{m, 1,0}\right) \cdot \xi_{m, 1,0}(f)\right] \frac{1}{k!}\left(x-a_{2,1}\right)^{k}=$ $\sum_{k=0}^{N-p-2}\left[f^{(k)}\left(a_{2,1}\right)-\sum_{m=k}^{p} \frac{1}{(m-k)!} a_{2,1}^{m-k} \cdot f^{(m)}(0)\right] \frac{1}{k!}\left(x-a_{2,1}\right)^{k}=\sum_{k=0}^{N-p-2}\left(R_{0}^{p} f\right)^{(k)}\left(a_{2,1}\right) \frac{1}{k!}$ $\left(x-a_{2,1}\right)^{k}=T_{a_{2,1}}^{N-p-2}\left(R_{0}^{p} f\right)$.

Therefore, $S_{N}(f)=T_{0}^{p} f$ on $I_{1,1}$ and $S_{N}(f)=T_{0}^{p} f+T_{a_{2,1}}^{N-p-2}\left(R_{0}^{p} f\right)$ on $I_{2,1}$. Particularly, $S_{2 p+2}(f)=T_{0}^{p} f+T_{a_{2,1}}^{p}\left(R_{0}^{p} f\right)=T_{a_{2,1}}^{p} f$, by (1). In addition, $S_{N}^{(k)}(f)\left(a_{2,1}\right)=f^{(k)}\left(a_{2,1}\right)$ for $0 \leq k \leq N-p-2$, as is easy to check.

Continuing in this way, the values $2 p+3 \leq N \leq 3(p+1)$ correspond to the passage on the interval $I_{2,2}$ from the polynomial $T_{0}^{p} f$ to the polynomial $T_{a_{2,2}}^{p} f$ and the values $3 p+4 \leq N \leq$ $4(p+1)$ in turn transform $T_{a_{2,1}}^{p} f$ on $I_{4,2}$ into $T_{a_{4,2}}^{p} f$.

By the same argument, $S_{2^{s}(p+1)}(f)=T_{a_{j, s}}^{p} f$ on $I_{j, s}$ for $1 \leq j \leq 2^{s}$ and if j with $0 \leq j<2^{s}$ is fixed, then the values $N=2^{s}(p+1)+j(p+1)+m+1$ with $0 \leq m \leq p$ transform $T_{a_{j+1, s}}^{p} f$ on $I_{2 j+2, s+1}$ into $T_{a_{2 j+2, s+1}}^{p} f$.

Combining all considerations of this section yields the following result:
Lemma 1. The system $\left(f_{n}, \eta_{n}\right)_{n=1}^{\infty}$ is biorthogonal. Given $f=\left(f^{(k)}\right)_{0 \leq k \leq p} \in \prod_{0 \leq k \leq p}$ $C(K(\Lambda))$ and $N=2^{s}(p+1)+j(p+1)+m+1$ with $s \in \mathbb{N}_{0}, 0 \leq j<2^{s}$, and $0 \leq m \leq p$ we have $S_{N}(f)=T_{a_{k, s+1}}^{p} f$ on $I_{k, s+1}$ with $k=1,2, \ldots, 2 j+1, S_{N}(f)=T_{a_{k, s}}^{p} f$ on $I_{k, s}$ with $k=j+2, j+3, \ldots, 2^{s}$, and $S_{N}(f)=T_{a_{j+1, s}}^{p} f+T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)$ on $I_{2 j+2, s+1}$.

3. Spaces of differentiable functions and their traces

Let K be a compact subset of $\mathbb{R}, p \in \mathbb{N}$. Then the finite product $\prod_{0 \leq k \leq p} C(K)$ equipped with the norm $\left|\left(f^{(k)}\right)_{0 \leq k \leq p}\right|_{p}=\sup \left\{\left|f^{(k)}(x)\right|: x \in K, k \leq p\right\}$ is a Banach space. We will consider its subspace $C^{p}(K)$ consisting of functions on K such that for every nonisolated point $x \in K$ there exist continuous derivatives $f^{(k)}(x)$ of order $k \leq p$ defined in a usual way. If the point x is isolated, then the set $\left(f^{(k)}(x)\right)_{0 \leq k \leq p}$ can be taken arbitrarily.

The space $\mathcal{E}^{p}(K)$ of Whitney functions of order p consists of functions from $C^{p}(K)$ that are extendable to C^{p} - functions on \mathbb{R}. Due to Whitney [18],

$$
\begin{align*}
& f=\left(f^{(k)}\right)_{0 \leq k \leq p} \in \mathcal{E}^{p}(K) \text { if } \\
& \tag{2}\\
& \quad\left(R_{y}^{p} f\right)^{(k)}(x)=o\left(|x-y|^{p-k}\right) \quad \text { for } k \leq p \text { and } x, y \in K \text { as }|x-y| \rightarrow 0 .
\end{align*}
$$

The natural topology of a Banach space is given in $\mathcal{E}^{p}(K)$ by the norm

$$
\|f\|_{p}=|f|_{p}+\sup \left\{\left|\left(R_{y}^{p} f\right)^{(k)}(x)\right| \cdot|x-y|^{k-p} ; x, y \in K, x \neq y, k=0,1, \ldots, p\right\}
$$

The Fréchet spaces $C^{\infty}(K)$ and $\mathcal{E}(K)$ are obtained as the projective limits of the corresponding sequences of spaces. Similarly, the spaces $\mathcal{E}^{p}(K), \mathcal{E}(K)$ can be defined for $K \subset \mathbb{R}^{d}$ with $d>1$.

In general, the spaces $C^{p}(K)$ and $C^{\infty}(K)$ contain nonextendable functions and the norms $\|f\|_{p}$ and $|f|_{p}$ are not equivalent on $\mathcal{E}^{p}(K)$. A compact set $K \subset \mathbb{R}^{d}$ is called Whitney r-regular if it is connected by rectifiable arcs, and there exists a constant C such that $\sigma(x, y)^{r} \leq C|x-y|$ for all $x, y \in K$. Here σ denotes the intrinsic (or geodesic) distance in K. The case $r=1$ gives the Whitney property (P) [19]. If K is 1 -regular, then $C^{p}(K)=\mathcal{E}^{p}(K)$ [19, T.1]. A sufficient condition for coincidence $C^{\infty}(K)=\mathcal{E}(K)$ is r-regularity of K for some r. For an estimation of $\|\cdot\|_{p}$ by $|\cdot|_{p}$ in this case, we refer the reader to [17, IV, 3.11] and [2].

For one-dimensional compact sets we have the following trivial result:
Proposition 1. $C^{p}(K)=\mathcal{E}^{p}(K)$ for $2 \leq p \leq \infty$ if and only if $K=\cup_{n=1}^{N}\left[a_{n}, b_{n}\right]$ with $a_{n} \leq b_{n}$ for $n \leq N$.

Proof. Indeed, if K is a finite union of closed intervals, then for any C^{p}-function on K there exists a corresponding extension of the same smoothness, and what is more, the extension which is analytic outside K can be chosen (see e.g. in [12, Cor.2.2.3]).

In the converse case, the complement $\mathbb{R} \backslash K$ contains infinitely many disjoint open intervals. Therefore there exists at least one point $c \in K$ which is an accumulation point of these intervals. Let $K \subset[a, b]$ with $a, b \in K$. Without loss of generality we can assume that $[c, b]$ contains a sequence of intervals from $\mathbb{R} \backslash K$. Then $K \subset K_{0}:=[a, c] \cup \cup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$ with $\left(a_{n}\right)_{n=1}^{\infty},\left(b_{n}\right)_{n=1}^{\infty} \subset K, b_{1}=b, a_{n+1} \leq b_{n+1}<a_{n},\left(b_{n+1}, a_{n}\right) \subset \mathbb{R} \backslash K$ for all n. Given $1<p<\infty$, let us take $F=0$ on $[a, c], F=\left(a_{n}-c\right)^{p}$ on $\left[a_{n}, b_{n}\right]$ if $a_{n}<b_{n}$. In the case $a_{n}=b_{n}$ let $F\left(a_{n}\right)=\left(a_{n}-c\right)^{p}$ and $F^{(k)}\left(a_{n}\right)=0$ for all $k>1$. Thus, $F^{\prime} \equiv 0$. Then $f=\left.F\right|_{K}$ belongs to $C^{\infty}(K)$, but is not extendable to C^{p}-functions on \mathbb{R} because of violation of (2) for $y=c, x=a_{n}, k=0$.

This nonextendable function can be easily approximated in $|\cdot|_{p}$ by extendable functions. Therefore, by the open mapping theorem, the following is obtained:

Corollary 1. If $1<p<\infty$ and K is not a finite union of (maybe degenerated) segments, then the space $\left(\mathcal{E}^{p}(K),|\cdot|_{p}\right)$ is not complete. The same result is valid for $\left(\mathcal{E}(K),\left(|\cdot|_{p}\right)_{p=0}^{\infty}\right)$.

It is interesting that the case $p=1$ is exceptional here.
Examples. 1. Let $K=\{0\} \cup\left(2^{-n}\right)_{n=1}^{\infty}$. Then $C^{1}(K)=\mathcal{E}^{1}(K)$. Indeed, the function $f \in C^{1}(K)$ is defined here by two sequences $\left(\bar{f}_{n}\right)_{n=0}^{\infty}$ and $\left(f_{n}^{\prime}\right)_{n=0}^{\infty}$ with $\gamma_{n}:=\left(f_{n}-f_{0}\right) \cdot 2^{n}-f_{0}^{\prime} \rightarrow 0$ and $f_{n}^{\prime} \rightarrow f_{0}^{\prime}$ as $n \rightarrow \infty$. The second condition gives (2) with $k=1$. The first condition means (2) with $k=0, y=0$. For the remaining case $x=2^{-n}, y=2^{-m}$, we have $R_{y}^{1} f(x)=f_{n}-f_{m}-f_{m}^{\prime}\left(2^{-n}-2^{-m}\right)=\gamma_{n} \cdot 2^{-n}-\gamma_{m} \cdot 2^{-m}+\left(2^{-n}-2^{-m}\right)\left(f_{0}^{\prime}-f_{m}^{\prime}\right)$, which is $o\left(\left|2^{-n}-2^{-m}\right|\right)$ as $m, n \rightarrow \infty$, since $\max \left\{2^{-n}, 2^{-m}\right\} \leq 2 \cdot\left|2^{-n}-2^{-m}\right|$. Thus, $f \in \mathcal{E}^{1}(K)$.
2. Let $K=\{0\} \cup(1 / n)_{n=1}^{\infty}, f\left(\frac{1}{2 m-1}\right)=0, f\left(\frac{1}{2 m}\right)=\frac{1}{m \sqrt{m}}$ for $m \in \mathbb{N}$, and $f^{\prime} \equiv 0$ on K. Then $f \in C^{1}(K)$, but by the mean value theorem, there is no differentiable extension of f to \mathbb{R}.

4. Schauder bases in the spaces $\boldsymbol{C}^{\boldsymbol{p}}(\boldsymbol{K}(1))$ and $\mathcal{E}^{p}(\boldsymbol{K}(\Lambda))$

Let us show that the biorthogonal system suggested in Section 2 is a Schauder basis in both spaces $C^{p}(K(\Lambda))$ and $\mathcal{E}^{p}(K(\Lambda))$. Here, as before, $p \in \mathbb{N}$. Given g on $K(\Lambda)$, let $\omega(g, \cdot)$ be the
modulus of continuity of g, that is $\omega(g, t)=\sup \{|g(x)-g(y)|: x, y \in K(\Lambda),|x-y| \leq t\}, t>$ 0 . If $x \in I=\left[a, a+l_{s}\right]$, then for any $i \leq p$ we have easily

$$
\begin{equation*}
\left|\left(R_{a}^{p} f\right)^{(i)}(x)\right|<\omega\left(f^{(i)}, l_{s}\right)+l_{s} \cdot 2|f|_{p} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(R_{a}^{p} f\right)^{(i)}(x)\right|<4|f|_{p} \tag{4}
\end{equation*}
$$

Lemma 2. The system $\left(f_{n}, \eta_{n}\right)_{n=1}^{\infty}$ is a Schauder basis in the space $C^{p}(K(\Lambda))$.
Proof. Given $f \in C^{p}(K(\Lambda))$ and $\varepsilon>0$, we want to find N_{ε} with $\left|f-S_{N}(f)\right|_{p} \leq \varepsilon$ for $N \geq N_{\varepsilon}$. Let us take S such that for all $i \leq p$ we have

$$
\begin{equation*}
3 \cdot \omega\left(f^{(i)}, l_{S}\right)+14 \cdot l_{S} \cdot|f|_{p}<\varepsilon . \tag{5}
\end{equation*}
$$

Set $N_{\varepsilon}=2^{S}(p+1)$. Then any $N \geq N_{\varepsilon}$ has a representation in the form $N=2^{s}(p+1)+j(p+$ 1) $+m+1$ with $s \geq S, 0 \leq j<2^{s}$, and $0 \leq m \leq p$. Let us fix $i \leq p$ and apply Lemma 1 to $R:=\left(f-S_{N}(f)\right)^{(i)}(x)$ for $x \in K(\Lambda)$.

If $x \in I_{k, s+1}$ with $k=1, \ldots, 2 j+1$, then $|R|=\left|\left(R_{a_{k, s+1}}^{p} f\right)^{(i)}(x)\right|<\varepsilon$, by (3) and (5).
If $x \in I_{k, s}$ with $k=j+2, j+3, \ldots, 2^{s}$, then $|R|=\left|\left(R_{a_{k, s}}^{p} f\right)^{(i)}(x)\right|$ and the same arguments can be used.

Suppose $x \in I_{2 j+2, s+1}$. Then $|R| \leq\left|\left(R_{a_{j+1, s}}^{p} f\right)^{(i)}(x)\right|+\left|\left(T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)\right)^{(i)}(x)\right|$. For the first term we use (3). The addend vanishes if $m<i$. Otherwise, it is

$$
\begin{aligned}
& \mid\left(R_{a_{j+1, s}}^{p} f\right)^{(i)}(x)-\left(R_{a_{j+1, s}}^{p} f\right)^{(i)}\left(a_{2 j+2, s+1}\right) \\
& \left.\quad-\sum_{k=i+1}^{m}\left(R_{a_{j+1, s}}^{p} f\right)^{(k)}\left(a_{2 j+2, s+1}\right) \frac{\left(x-a_{2 j+2, s+1}\right)^{k-i}}{(k-i)!} \right\rvert\, .
\end{aligned}
$$

Here, we estimate the first and the second terms by means of (3). For the remaining sum, we use (4): $\left|\sum_{k=i+1}^{m} \cdots\right| \leq 4|f|_{p} \sum_{k=i+1}^{m} l_{s+1}^{k-i} /(k-i)!<l_{s+1} \cdot 8|f|_{p}$. Combining these we conclude that $|R| \leq 3\left(\omega\left(f^{(i)}, l_{s}\right)+l_{s} \cdot 2|f|_{p}\right)+l_{s+1} \cdot 8|f|_{p}$. This does not exceed ε due to the choice of S. Therefore, $\left|f-S_{N}(f)\right|_{p} \leq \varepsilon$ for $N \geq N_{\varepsilon}$.

The main result is given for Cantor-type sets under mild restriction:

$$
\begin{equation*}
\exists C_{0}: l_{s} \leq C_{0} \cdot h_{s}, \quad \text { for } s \in \mathbb{N}_{0} \tag{6}
\end{equation*}
$$

Theorem 3. Let $K(\Lambda)$ satisfy (6). Then the system $\left(f_{n}, \eta_{n}\right)_{n=1}^{\infty}$ is a Schauder basis in the space $\mathcal{E}^{p}(K(\Lambda))$.

Proof. Given $f \in \mathcal{E}^{p}(K(\Lambda))$, we show that the sequence $\left(S_{N}(f)\right)$ converges to f as well in the norm $\|\cdot\|_{p}$. Because of Lemma 2, we only have to check that $\left|\left(R_{y}^{p}\left(f-S_{N}(f)\right)\right)^{(i)}(x)\right| \cdot|x-y|^{i-p}$ is uniformly small (with respect to $x, y \in K$ with $x \neq y$ and $i \leq p$) for large enough N. Fix $\varepsilon>0$. Due to the condition (2), we can take S such that

$$
\begin{equation*}
\left|\left(R_{y}^{p} f\right)^{(k)}(x)\right|<\varepsilon|x-y|^{p-k} \quad \text { for } k \leq p \text { and } x, y \in K(\Lambda) \text { with }|x-y| \leq l_{S} \tag{7}
\end{equation*}
$$

As above, let $N_{\varepsilon}=2^{S}(p+1)$ and $N=2^{s}(p+1)+j(p+1)+m+1$ with $s \geq S, 0 \leq j<2^{s}$, and $0 \leq m \leq p$.

For simplicity, we take the value $i=0$ since the general case can be analyzed in the same manner. We will consider different positions of x and y on $K(\Lambda)$ in order to show

$$
\left|R_{y}^{p}\left(f-S_{N}(f)\right)(x)\right|<C \varepsilon|x-y|^{p}
$$

where the constant C does not depend on x and y. In all cases, we use the representation of $S_{N}(f)$ given in Lemma 1.

Suppose first that x, y belong to the same interval $I_{k, s+1}$ with some $k=1, \ldots, 2 j+1$. Then $\left(f-S_{N}(f)\right)(x)=R_{a_{k, s+1}}^{p} f(x)$. From (1) it follows that $R_{y}^{p}\left(f-S_{N}(f)\right)(x)=R_{y}^{p} f(x)$. Here, $|x-y| \leq l_{s+1}$, so we have the desired bound by (7).

Similar arguments apply to the case $x, y \in I_{k, s}$ with $k=j+2, j+3, \ldots, 2^{s}$.
If $x, y \in I_{2 j+2, s+1}$, then $\left(f-S_{N}(f)\right)(x)=\left(R_{a_{j+1, s}}^{p} f\right)(x)-T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)(x)$ for $m<p$ and $\left(f-S_{N}(f)\right)(x)=\left(R_{a_{2 j+2, s+1}}^{p} f\right)(x)$ for $m=p$. Since $R^{p}\left(T^{m}\right)=0$ for $m<p$, in both cases we get $R_{y}^{p}\left(f-S_{N}(f)\right)(x)=R_{y}^{p} f(x)$ with $|x-y| \leq l_{s}$ and (7) can be applied once again.

We now turn to the cases when x and y lie on different intervals. Let $x \in I_{k, s+1}, y \in$ $I_{m, s+1}$ with distinct $k, m=1, \ldots, 2 j+1$. Then $R_{y}^{p}\left(f-S_{N}(f)\right)(x)=R_{a_{k, s+1}}^{p} f(x)-$ $\sum_{i=0}^{p}\left(R_{a_{m, s+1}}^{p}\right)^{(i)} f(y)(x-y)^{i} / i!$. Here, $\left|x-a_{k, s+1}\right| \leq l_{s+1}$, and $\left|y-a_{m, s+1}\right| \leq l_{s+1}$; thus, applying (7) gives $\left|R_{y}^{p}\left(f-S_{N}(f)\right)(x)\right|<\varepsilon \cdot l_{s+1}^{p}+\varepsilon \cdot \sum_{i=0}^{p} l_{s+1}^{p-i}|x-y|^{i} / i!$. Now, $|x-y| \geq$ $h_{s} \geq C_{0}^{-1} l_{s}$, by hypothesis. Therefore, $\left|R_{y}^{p}\left(f-S_{N}(f)\right)(x)\right|<C_{0}^{p}(e+1) \cdot \varepsilon \cdot|x-y|^{p}$, which establishes the desired result. Clearly, the same conclusion can be drawn for $x \in I_{k, s}, y \in I_{m, s}$ with distinct $k, m=j+2, \ldots, 2^{s}$, as well for the case when one of the points x, y belongs to $I_{k, s+1}$ with $k \leq 2 j+1$ whereas another lies on $I_{m, s}$ with $m=j+2, \ldots, 2^{s}$.

It remains to consider the most difficult cases: just one of the points x, y belongs to $I_{2 j+2, s+1}$. Suppose $x \in I_{2 j+2, s+1}$. We can assume that $y \in I_{2 j+1, s+1}$ since other positions of y only enlarge $|x-y|$. Here, $R_{y}^{p}\left(f-S_{N}(f)\right)(x)=R_{a_{j+1, s}}^{p} f(x)-$ $T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)(x)-\sum_{i=0}^{p}\left(R_{a_{2 j+1, s+1}}^{p}\right)^{(i)} f(y)(x-y)^{i} / i!$. We only need to estimate the intermediate T^{m} since other terms can be handled in the same way as above. Now, $\left|T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)(x)\right| \leq \sum_{i=0}^{m}\left|\left(R_{a_{j+1, s}}^{p}\right)^{(i)} f\left(a_{2 j+2, s+1}\right)\right|\left|x-a_{2 j+2, s+1}\right|^{i} / i!$. As before, we use (7). In addition, $\left|a_{2 j+2, s+1}-a_{j+1, s}\right|$ and $\left|x-a_{2 j+2, s+1}\right|$ do not exceed $C_{0}|x-y|$. By that $\left|T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)(x)\right| \leq C_{0}^{p} e \varepsilon|x-y|^{p}$.

In the last case $x \in I_{2 j+1, s+1}, y \in I_{2 j+2, s+1}$, we have $R_{y}^{p}\left(f-S_{N}(f)\right)(x)=R_{a_{j+1, s}}^{p} f(x)-$ $\sum_{i=0}^{p}\left[R_{a_{j+1, s}}^{p} f-T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)\right]^{(i)}(y)(x-y)^{i} / i!$. As above, it is sufficient to consider only $\sum_{i=0}^{p}\left[T_{a_{2 j+2, s+1}}^{m}\left(R_{a_{j+1, s}}^{p} f\right)\right]^{(i)}(y)(x-y)^{i} / i!$ since for other terms we have the desired bound. Of course, the genuine summation here is until $i=m$. Let us consider a typical term t_{i} of the last sum. It equals to $(x-y)^{i} / i!\cdot \sum_{k=i}^{m}\left(R_{a_{j+1, s}}^{p} f\right)^{(k)}(y)\left(y-a_{2 j+2, s+1}\right)^{k-i} /(k-i)!$. Arguing as above, we obtain $\left|t_{i}\right| \leq|x-y|^{i} / i!\cdot \varepsilon \sum_{k=i}^{m} l_{s}^{p-k} l_{s+1}^{k-i} /(k-i)!<e \varepsilon|x-y|^{i} l_{s}^{p-i} / i!$. By that, $\left|\sum_{i=0}^{m} t_{i}\right| \leq C_{0}^{p} \mathrm{e}^{2} \varepsilon|x-y|^{p}$, which completes the proof.

Remarks. 1. One can enumerate all functions from $\left(e_{k, 1,0}\right)_{k=0}^{\infty} \cup\left(e_{k, 2 j, s}\right)_{k=0, j=1, s=1}^{\infty, 2^{s-1}, \infty}$ and the corresponding functionals η into a biorthogonal sequence $\left(f_{n}, \eta_{n}\right)_{n=1}^{\infty}$ in such way that for some increasing sequences $\left(N_{p}\right)_{p=0}^{\infty},\left(q_{p}\right)_{p=0}^{\infty}$ the sum $S_{N_{p}}(f)=\sum_{n=1}^{N_{p}} \eta_{n}(f) \cdot f_{n}$ coincides with $T_{a_{j, p}}^{q_{p}} f$ on $I_{j, p}$ for $1 \leq j \leq 2^{p}$. Yet, the sequence $\left(f_{n}, \eta_{n}\right)_{n=1}^{\infty}$ will not have the basis property in the space $\mathcal{E}(K(\Lambda))$. Indeed, let $F \in C^{\infty}[0,1]$ solve the Borel problem for the sequence $\left(q_{n}!l_{n}^{-q_{n}}\right)_{n=0}^{\infty}$, that is $F^{\left(q_{n}\right)}(0)=q_{n}!l_{n}^{-q_{n}}$ for $n \in \mathbb{N}_{0}$ and $F^{(k)}(0)=0$ for $k \neq q_{n}$. Let
$f=\left.F\right|_{K(\Lambda)}$. Then $\left|f-S_{N_{p}}(f)\right|_{0} \geq\left|R_{0}^{q_{p}} f\left(l_{p}\right)\right| \geq \sum_{k=1}^{q_{p}} f^{(k)}(0) l_{p}^{k} / k!-\left|f\left(l_{p}\right)-f(0)\right|>$ $1-\left|f\left(l_{p}\right)-f(0)\right|$. The last expression has a limit 1 as $p \rightarrow \infty$, so $S_{N}(f)$ does not converge to f in $|\cdot| 0$.

For a basis in the space $\mathcal{E}(K(\Lambda))$, see [6].
2. As concerns the paper by Jonsson [9], we note that natural triangulations of the set $K(\Lambda)$ are given by the sequence $\mathcal{F}_{s}=\left\{I_{i, s}, 1 \leq i \leq 2^{s}\right\}, s \geq 0$. The regularity conditions discussed in [9] are reduced in this case to (6) and

$$
\begin{equation*}
\liminf _{s \rightarrow \infty} \frac{l_{s+1}}{l_{s}}>0 \tag{8}
\end{equation*}
$$

Thus, provided these conditions, the expansion of $f \in \mathcal{E}^{p}(K(\Lambda))$ with respect to Jonsson's interpolating system converges, at least in $|\cdot|_{p}$, to f, by Proposition 2 in [9]. It is interesting to check the corresponding convergence in topology given by the norm $\|\cdot\|_{p}$. At the same time it is essential for the proof of by Proposition 2 [9] that the diameters of neighboring triangulations are comparable, which is (8) for Cantor-type sets. Our construction can be applied to any "small" Cantor set with arbitrary fast decrease of the sequence $\left(l_{s}\right)_{s=0}^{\infty}$. The basis problem for the space $\mathcal{E}^{p}(K(\Lambda))$ in the case of "large" Cantor set with $l_{s} / h_{s} \rightarrow \infty$ is open.

Acknowledgment

The second author is supported by Tubitak Ph.D. scholarship.

References

[1] S. Banach, Theory of Linear Operations, North-Holland Publishing Co., Amsterdam, 1987.
[2] L.P. Bos, P.D. Milman, The equivalence of the usual and quotient topologies for $C^{\infty}(E)$ when $E \subset \mathbb{R}^{n}$ is Whitney p-regular, in: Approximation Theory, Spline Functions and Applications, Maratea, 1991, Kluwer Acad. Publ., Dordrecht, 1992, pp. 279-292.
[3] Z. Ciesielski, A construction of basis in $C^{(1)}\left(I^{2}\right)$, Studia Math. 33 (1969) 243-247.
[4] Z. Ciesielski, J. Domsta, Construction of an orthonormal basis in $C^{m}\left(I^{d}\right)$ and $W_{p}^{m}\left(I^{d}\right)$, Studia Math. 41 (1972) 211-224.
[5] A.P. Goncharov, Spaces of Whitney functions with basis, Math. Nachr. 220 (2000) 45-57.
[6] A.P. Goncharov, Basis in the space of C^{∞}-functions on Cantor-type sets, Constr. Approx. 23 (2006) 351-360.
[7] A.P. Goncharov, Local interpolation and interpolating bases, East J. Approx. 13 (1) (2007) 21-36.
[8] I.V. Ivanov, B. Shekhtman, Linear discrete operators on the disk algebra, Proc. Amer. Math. Soc. 129 (7) (2001) 1987-1993.
[9] A. Jonsson, Triangulations of closed sets and bases in function spaces, Anal. Acad. Sci. Fenn. Math. 29 (2004) 43-58.
[10] A. Jonsson, A. Kamont, Piecewise linear bases and Besov spaces on fractal sets, Anal. Math. 27 (2) (2001) 77-117.
[11] A. Jonsson, H. Wallin, Function spaces on subsets of \mathbb{R}^{n}, Math. Rep. 2 (1) (1984).
[12] S. Krantz, H. Parks, A Primer of Real Analytic Functions, Birkhäuser Verlag, 1992.
[13] B.S. Mitjagin, The homotopy structure of a linear group of a Banach space, Uspekhi Mat. Nauk 25 (5) (1970) 63-106.
[14] S. Schonefeld, Schauder bases in spaces of differentiable functions, Bull. Amer. Math. Soc. 75 (1969) 586-590.
[15] S. Schonefeld, Schauder bases in the Banach spaces $C^{k}\left(T^{q}\right)$, Trans. Amer. Math. Soc. 165 (1972) 309-318.
[16] Z. Semadeni, Schauder Bases in Banach Spaces of Continuous Functions, in: Lecture Notes in Mathematics, vol. 918, Springer-Verlag, Berlin, New York, 1982.
[17] J.-C. Tougeron, Idéaux de Fonctions Différentiables, Springer-Verlag, Berlin, New York, 1972.
[18] H. Whitney, Analytic extension of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934) 63-89.
[19] H. Whitney, On the extension of differentiable functions, Bull. Amer. Math. Soc. 50 (1944) 76-81.

[^0]: * Corresponding author.

 E-mail addresses: goncha@fen.bilkent.edu.tr (A.P. Goncharov), ozfidan@fen.bilkent.edu.tr (N. Ozfidan).

