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Abstract

We suggest a Schauder basis in Banach spaces of smooth functions and traces of smooth functions on
Cantor-type sets. In the construction, local Taylor expansions of functions are used.
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1. Introduction

We consider the basis problem for Banach spaces of differentiable functions. It is not
difficult to present a (Schauder) basis in the space C”[0, 1]. Indeed, by means of the operator
T:C[0,1] — Cé’_-[O, 17: f - fox (;” J’H f(xp)dxp - - -dx; we have an isomorphism
CP[0, 1] @ R?” ¢ CJ0, 1]. Here C ;_-[0, 1] denotes the subspace of functions that are flat at 0, that
is such that g(k) (0) =0for 0 < k < p — 1. Therefore, any Schauder basis in C[0, 1] gives a
corresponding basis in the space C”[0, 1].

For other compact sets K, the question about a basis in the space C?(K) may be much
more difficult. For example, one of the basis problems of Banach concerning the space C'[0, 1]
(see [1, p.147]) was solved only 37 years later by Ciesielski in [3] and Schonefeld in [14]. Even
after this, a generalization to the case C”[0, 11% with p > 2 was not trivial (see [15] for details).
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Schauder bases in the spaces C?[0, 1]¢ were suggested independently by Ciesielski and Domsta
in [4] and by Schonefeld in [15]. We should notice that two main approaches in the construction
of bases were presented in these papers. Schonefeld’s system is interpolating basis, while the
basis constructed in [4] is orthonormal, but not interpolating.

Mitjagin established in [13, Th.3] that if M and M> are n-dimensional smooth manifolds with
or without boundary, then the spaces C? (M) and C?(M>) are isomorphic. This result essentially
enlarges the class of compact sets K with a basis in the space C?(K), but it cannot be applied to
compact sets with infinitely many components, in particular for nontrivial totally disconnected
sets.

Jonsson considered in [9] triangulations of compact sets in R and constructed an
interpolating Schauder basis in the space C?(K) provided the compact set K admits a sequence
of regular triangulations. By Theorem 1 in [9], the last condition is valid if and only if K
preserves the so-called Local Markov Inequality, which in turn means that K is uniformly perfect
[11, Section 2.2]. On the other hand, the space considered in [9] was actually £7 (K), that is the
Whitney space of functions on K extendable to functions from C?(R), but equipped with the
norm of the space C?(K). It should be noted that, in general, the space £ (K) is not complete
in this norm (see [9, p.54] and Section 3).

Here we consider the case of a Cantor-type set K and present explicitly a Schauder basis
in the Banach space C”(K) of p times differentiable on K functions as well as in the
Whitney space £P(K). In the construction local Taylor expansions of functions are used. In a
sense, this generalizes the basis from Haar functions in the space C(K) for the Cantor set K
[16, Prop. 2.2.5]. Clearly, the system of monomials cannot form a basis in the space C?[0, 1]
with p < oo, containing non-analytic functions. In our case, for a Cantor-type set K, “local
Taylor” bases are presented only in the Banach spaces £ (K) with p < oo, but not in the Fréchet
spaces £(K) of Whitney functions of infinite order. For the last case, a basis was suggested in [6]
by means of local Newton interpolations; see also [7] for a similar basis in C(K). Interpolating
Schauder bases in other functional Banach spaces on fractals were given in [10]. It should be
noted that not all functional spaces possess interpolating bases [8].

2. Local Taylor expansions on Cantor-type sets

Given compact set K C R, f = (f®)o<t<n € [To<k<n C(K) and a, x € K, let us consider

the formal Taylor polynomial T f(x) = D gj<, [ ® (a)% and the corresponding Taylor
remainder R f(x) = f(x) — T f(x). In the case of perfect K, the set (f® (X))o<k<n,xek 18
completely defined by the values of f on K provided existence of the corresponding derivatives.
If m <nanda,b, c € K then trivially

T!oT/" =T/, R!oR!=R!  R'oT/=0. (1)

Let A = (l5)$2, be a sequence such that [p = 1 and 0 < 2/;41 < [ fors € Ng := {0, 1,...}.
Let K (A) be the Cantor set associated with the sequence A that is K(A) = (2, Es, where
Eg = I1,0 = [0, 1], Ej is a union of 2° closed basic intervals I; ; = [aj s, bj ] of length [; and
E41 is obtained by deleting the open concentric subinterval of length A := I — 21| from each
Ij,s» ] = 1,2, LLL28,

Let us consider the set of all left endpoints of basic intervals. Since aj; = azj_1 41 for
J =< 2%, any such point has infinitely many representations in the form a; ;. We select the
representation with the minimal second subscript and call it the minimal representation. If j
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is even, then the representation a; is minimal for the corresponding point. Otherwise, for
j =292m + 1)+ 1 > 1 we obtain a;; = axn42,5—4. Clearly, a;y = ajo for all s.

Therefore we have a bijection between the set of all left endpoints of basic intervals and the

21 o
setA=ajoVU (“2j,s)j=1,s=1~

Let us enumerate the set A by first increasing s, then j: x; = a0 = 0, x2 = ax1 =
1 =101, x3 =axp2 =11 —lo, x4 = asp = 1 —1p,... and, in general, xos 1 = az s+1 for
k=1,2,...,2%

Letusfix p e NNFors e Ny, j <2and 0 < k < plete ;s(x) = (x —aj,x)k/k! ifx €
K(A) N1 and e, js = 0on K(A) otherwise. Given f = (f®)o<k<p € [To<k<p C(K(A)),
let & ;s (f) = f(k) (aj,s) for the same values of s, j, and k as above. Clearly, for the fixed level
s, the system (ex, s, &, j,s) is biorthogonal, that is & ; s(en,is) = Skn - 8;;. In order to obtain
biorthogonality as well with regard to s, we will use the following convolution property of the
values of functionals on the basis elements (see [5, L.3.1] and [6, L.2]). Let /; , D I 5—1. Then

p
Z 5k,2j,s(em,j,s—l) : ‘i'_m,j,s—l(eq,i,n) = ‘i:k,Zj,s (eq,i,n) forallg < p.

m=k

Indeed, (ex,in)pq» (€k.j.s—1) g (€k.2j.s)h—q are three bases in the space Pp(lj,s) of
polynomials of degree not greater than p on the interval Ir; ;. If M, ., denotes the transition
matrix from the 7-th basis to the r-th basis, then the identity above means M3 oMo 1 = M3 1.

On the other hand, in our case, this identity is the corresponding binomial expansion:

Xq: (azjs —ajs—)" % (aj -1 —ain)?™ _ (azjs — ain)*

(m —k)! (g —m)! o (g—hk)!

m=k

Here we consider summation until g since for g < m < p, the terms &, ; s_1(eq,i ) vanish.
. . . 251
We restrict our attention only to the functions (ex1,0)f_, and (ex.2j.s)b g i1

corresponding to the set A. Let us enumerate this family in the lexicographical order with]re;i:;eclt
to the triple (s, j, k) : fo = €ex-1,10 = Gapr(r —x)" - xi0 forn = 1,2, p+ 1.
Here and in what follows, x; s denotes the characteristic function of the interval /; ;. After this,
fo = en—p-221 = moc —x)" P2 gy forn =p+2,p+3,....2(p+ 1) and in
general, if (n — D(p+ 1) + 1 <n <m(p+ 1), then f,, = £(x — x)* - x2is11 = € 2i541-
Herem =25 +iwithl <i <2andk =n — (m — 1)(p + 1) — 1. We see that all functions
of the type %(x — xm)k - X2is+41 With0 < k < pandm = 2° +i € N are included into the
sequence (fn);2 ;.

For the same values of parameters as above, we define the functionals ng 1,0 = &k 1,0 for
k=0,1,...,pand

p
Nk2js = ék,Zj,s - Z Sk,Zj,s (em,j,s—l) : sm,j,x—l
m=k

fors e N, j = 1,2,...,27 1 and k = 0, 1,..., p. In what follows, we will use the
minimal representations of the points a; ; and the corresponding functionals &, ; ;. For example,
Nk.2.s = &k2.5 — Zf:l:k &k 2.5(em.1,0) - &m.1,0- This agreement is justified by the fact that the value
ém,js()=f M (a ,s) does not depend on the representation of the point a; ; and the functions
em,j,s—1s €m,r,s—q coincide on the interval I s if aj ;1 = ar5—q.
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The crucial point of the construction is that the functionals 1y »; ¢ are biorthogonal, not only
to all elements (ex 2 j,s—l)lfzo’ but also, by the convolution property, to all (ek,zi,n),fzo with
n=0,1,....,s—2andi =1,2,...,2" 1 In addition, the functional Nk,2j,s takes zero value at
all elements (ek,2i,n)1f=0 withn > s, except e 2,5, where it equals 1.

In the same lexicographical order as above, we arrange all functionals (77k,1,0)1f=o and

(77k,2j,s),f’:28’j1;°fs=1 into the sequence (1,)5° ;.

Our next goal is to express the sum Sy(f) = Z,Ilv:l Na(f) - fa in terms of the Taylor
polynomials of the function f. Clearly, Sy (f) = TON -1 fforl<N<p+1.

Suppose p +2 < N < 2(p + 1). Then Sy(f) = TJf on I;. On the inter-
TV f + Z,I,V:Hz NMn—p—22,1(f) - en—p—22,1. For the sec-
ond term, we have Y0 "7 [&21(f) — XL _, &1 (em10) - Emlo(f)] e — ot =

Yico 2[f<k>(a21)—2m Camad T SO f Gt = SR DS @

N 2
(x —ax,)F =Ty "(RY ).
N p—2

Therefore, Sy (f) = Tpf on I11 and Sy (f) = Tpf + T, " (Rgf) on I ;. Particularly,
Sopa(f) = TP f + TL (REf) = TL £, by (1). In addition, S (f)(a2.1) = f®(az,) for
0 <k <N — p—2,asis easy to check.

Continuing in this way, the values 2p + 3 < N < 3(p + 1) correspond to the passage on the
interval I > from the polynomial Top f to the polynomial Ta’;’z f and the values 3p +4 < N <
4(p + 1) in turn transform Tal;, f on I 5 into Taﬁ ,f

By the same argument, Sps(p+1)(f) = a”f onlj forl < j<2%andif j with0 < j < 2°
is fixed, then the values N =2°(p+ 1)+ j(p+ 1) +m + 1 with O < m < p transform Ta/+1 f

on Ij42 441 into Ta2j+2,x+] f.
Combining all considerations of this section yields the following result:

val I 1, we obtain Sy(f)

Lemma 1. The system (fn,nn);’o:1 is biorthogonal. Given f = (f(k))ofksp € Hosksp
C(K(A) and N _2s(p+ l)+j(p+1)+m+1withs €eNyp,0<j<2%and0<m<p
we have Sy(f) = akmf on Iy g4+1 wnhk =1,2,...,2j+ 1, Sn(f) = ukjf on I s with

k=j+2j+3 ... 2 ad Sy(f) =TI, f+Th ,  (RE. f)onhj
3. Spaces of differentiable functions and their traces

Let K be a compact subset of R, p € N. Then the finite product [ [y, < » C(K) equipped with
the norm |(f(k))05k5p|p = sup{lf(k) (x)| : x € K,k < p}is a Banach space. We will consider
its subspace C?(K) consisting of functions on K such that for every nonisolated point x € K
there exist continuous derivatives f® (x) of order k < p defined in a usual way. If the point x is
isolated, then the set (f® (x))o<k<p can be taken arbitrarily.

The space £7(K') of Whitney functions of order p consists of functions from C?(K) that are
extendable to C?”— functions on R. Due to Whitney [18],

f=Oozksp € EPK) if

RYHP () =o(lx — y|P™*) fork < pandx, y € K as |x — y| — 0. )

The natural topology of a Banach space is given in £7(K') by the norm

171 = 1715 +sup {IRENO 1 1x =y 5 x, y € Kox # v, k=01, p].
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The Fréchet spaces C*°(K) and £(K) are obtained as the projective limits of the
corresponding sequences of spaces. Similarly, the spaces £P(K), £(K) can be defined for
K C RY withd > 1.

In general, the spaces C”(K) and C°°(K) contain nonextendable functions and the norms
Il fll, and | f1], are not equivalent on £ (K). A compact set K C R is called Whitney r-regular
if it is connected by rectifiable arcs, and there exists a constant C such that o (x, y)" < C|x — y|
for all x, y € K. Here o denotes the intrinsic (or geodesic) distance in K. The case r = 1 gives
the Whitney property (P) [19]. If K is 1-regular, then C?(K) = £EP(K) [19, T.1]. A sufficient
condition for coincidence C*°(K) = £(K) is r-regularity of K for some r. For an estimation of
Il - I, by | - | in this case, we refer the reader to [17, IV, 3.11] and [2].

For one-dimensional compact sets we have the following trivial result:

Proposition 1. CP(K) = EP(K) for2 < p < oo ifand only if K = Uflvzl[an, b, | with a,, < b,
forn < N.

Proof. Indeed, if K is a finite union of closed intervals, then for any C?-function on K there
exists a corresponding extension of the same smoothness, and what is more, the extension which
is analytic outside K can be chosen (see e.g. in [12, Cor.2.2.3]).

In the converse case, the complement R \ K contains infinitely many disjoint open intervals.
Therefore there exists at least one point ¢ € K which is an accumulation point of these
intervals. Let K C [a, b] with a, b € K. Without loss of generality we can assume that [c, b]
contains a sequence of intervals from R \ K. Then K C Ky = [a,c] U U,fo: 1Lan, by] with
(@), (b)) C K,by = b,ant1 < byr1 < an, (bpy1,a,) C R\ K for all n. Given
1 < p<oo,letustake F = 0on [a,c], F = (a, — ¢)? on [a,, b,] if a, < b,. In the case
an = by, let F(ap) = (ay — ¢)? and F®(a,) = 0 for all k > 1. Thus, F’ = 0. Then f = F|g
belongs to C*°(K), but is not extendable to C”-functions on R because of violation of (2) for
y=c,x=a,,k=0. U

This nonextendable function can be easily approximated in | - |, by extendable functions.
Therefore, by the open mapping theorem, the following is obtained:

Corollary 1. If 1 < p < 0o and K is not a finite union of (maybe degenerated) segments, then
the space (EP(K), | - |p) is not complete. The same result is valid for (£(K), (| - |p);°=0).

It is interesting that the case p = 1 is exceptional here.

Examples. 1.Let K = {0}U(27)% . Then C'(K) = £'(K). Indeed, the function f € C'(K)
is defined here by two sequences (f,,)7°, and (f,)7° with y, = (fu — fo) - 2" — f5 — O
and f, — fjasn — oo. The second condition gives (2) with k = 1. The first condition
means (2) with k = 0,y = 0. For the remaining case x = 27",y = 27", we have
RLFOO = fu— fn = fp@" =27 =y - 27—y - 27 4 277 — 27M)(ff — f,), which
iso(|27" —27™|) as m, n — oo, since max{2~", 27"} <2.[27"* — 27| Thus, f € £ (K).

2. Let K = {O}U(I/n)l‘f’:],f(ﬁ) =0,f<ﬁ) = L form e N,and f' = 0on K.

Then f € C!(K), but by the mean value theorem, there is no differentiable extension of f to R.
4. Schauder bases in the spaces C? (K (A)) and £7(K(A))

Let us show that the biorthogonal system suggested in Section 2 is a Schauder basis in both
spaces C? (K (A)) and EP (K (A)). Here, as before, p € N. Given g on K (A), let w(g, -) be the
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modulus of continuity of g, thatis w(g, 1) = sup{|g(x) —g(¥)| : x,y € K(A), |[x —y| <t},t >
0.If x € I = [a, a + 5], then for any i < p we have easily

I(RE YD) < o(fD, 1) +15 - 21 f1,p 3)

and

(R /D) < 41f1,. @)

Lemma 2. The system (fu, )5, is a Schauder basis in the space C (K (A)).

Proof. Given f € CP(K(A))and ¢ > 0, we want to find N, with | f —Sy(f)|, < sfor N > N,.
Let us take S such that for all i < p we have

3-w(fD,Is) + 1415 - | f], <& (5)

Set No = 25(p+1). Then any N > N, has a representation in the form N = 25(p+ 1)+ j(p +
D+m+1withs > S5,0<j <2 and0 <m < p. Letus fixi < p and apply Lemma 1 to
R:=(f —Sn(/)ND(x) forx € K(A).

Ifx € [ 41 withk =1,...,2j + 1, then |R| = |(R, Y+1f)(")(x)| < &, by (3) and (5).

Ifx € Iy s withk = j+2, j+3,...,2% then |R| = |(Rak rf)(")(x)| and the same arguments
can be used.

Suppose x € rj12,541. Then |R| < [(RE,,, /) 0 +(T2 s, o
first term we use (3). The addend vanishes if m < i. Otherwise, it is

RY,,, /) (x)]. For the

a,+1;f)(l)(x) aj+13f) )(a2j+25+1)

(x — azjqo,501)F
(k—1)!

Z (RE ., H®P(@a2jy2.541)

k=i+1

Here, we estimate the first and the second terms by means of (3). For the remaining sum, we use
@ |y | < A1 i 1551/ (e — )Y < T4y - 8] £1,,. Combining these we conclude
that |R| < 3(w(f D, 15) + L5 - 2| f1) + Ls41 - 8] f 1. This does not exceed ¢ due to the choice of
S. Therefore, | f — Sy (f)lp <efor N > N,. [0

The main result is given for Cantor-type sets under mild restriction:

ACy: Iy < Co-hy, fors e Np. (6)

Theorem 3. Let K (A) satisfy (6). Then the system (fu, na)ye is a Schauder basis in the space
EP(K (A)).

Proof. Given f € EP(K (A)), we show that the sequence (Sy(f)) converges to f as well in the
norm |- || ,. Because of Lemma 2, we only have to check that |(R§)(f —Sn(MND @) |x—y|i—P
is uniformly small (with respect to x, y € K with x # y and i < p) for large enough N. Fix
& > 0. Due to the condition (2), we can take S such that

I(RY £Y® (x)| < elx — y|P™% fork < pandx, y € K(A) with |x — y| <s. (7)

Asabove, let N, =25(p+ 1) and N =2°(p+ D)+ j(p+ 1)+ m+ 1 withs > 5,0 < j < 2%,
and0 <m < p.
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For simplicity, we take the value i = O since the general case can be analyzed in the same
manner. We will consider different positions of x and y on K (A) in order to show

IRY(f = Sn(fN@)] < Celx —yI?,

where the constant C does not depend on x and y. In all cases, we use the representation of
Sy (f) given in Lemma 1.

Suppose first that x y belong to the same interval I ;11 withsome k =1,...,2j 4 1. Then
(f = SN(fN(x) = Rgy. erlf()c) From (1) it follows that Rp(f SN(f))(x) = Rpf(x) Here,
|x — y| <541, so we have the desired bound by (7).

Similar arguments apply to the case x, y € Iy s withk = j +2,j+3,...,2%.

nyEhﬁuﬂﬂmﬂf—hgﬁm——mwmﬁ@%—@MHI%HJWQM
m < pand (f — Sy(f)x) = (Razj+2 1 f)(x) form = p. Since RP(T™) = 0 form < p,in
both cases we get Rf,’(f - Sn(fHx) = Rpf(x) with |[x — y| < s and (7) can be applied once
again.

We now turn to the cases when x and y lie on different intervals. Let x € Ix 41,y €
Ly s+1 with distinct k,m = 1,...,2j + 1. Then Rf(f - Sv(fHx) = aks+1f(x)
2io(Riy )V f () = y)/il Here, |x — agsial < Ly, and [y = @] < Iy thus,
applying (7) gives |RY (f — Sn())@)| <e-1l +e- Zp—olm |x — y|'/i!. Now, |x — y| >
hy > Cy ls, by hypothesis. Therefore, |R5(f SN(f)Xx)| < CO (e+1)-¢e-|x — y|?, which
establishes the desired result. Clearly, the same conclusion can be drawn for x € Iy 5,y € I s
with distinct k,m = j + 2, ..., 2%, as well for the case when one of the points x, y belongs to
Iy s+1 with k < 2j 4+ 1 whereas another lies on I,  withm = j +2, ..., 25,

It remains to consider the most difficult cases: just one of the points x,y belongs
to Ijy2s41. Suppose x € Ipjip5411. We can assume that y € 12]+1 s+1 since

other positions of y only enlarge |x — y|. Here, Rf(f - Sv(fHx) = a;+| Sx) =
Ta”;jﬂ'm aj+“f)(x) — Zp O(Ra2,+1 Y+1)(’)f(y)(x — y)'/i!l. We only need to estimate

the intermediate 7™ since other terms can be handled in the same way as above. Now,
T3 ot RE O] = T (RGP flazji2,540)] X — a2j42,5411 /1L As before, we
use (7). In addltlon lazj+2, s+1 —aji1,s] and |x — azj42,5+1] do not exceed Cplx — y|. By that

|T£J-+2J+1 a]+1 SHXO] = Co eglx — y|P.
In the last case x € 12,+1 y+1, y € Ljias¢1, we have RY (f — Sy(f)(x) = RE,,,, f(x) —

a/+1 S az,um a/+1 Yf)](’)(y)(x y)/i!. As above, it is sufficient to consider only

0[ 0342541 (RaJJr1 s f)](’)(y)(x —y) /l! since for other terms we have the desired bound. Of
course the genuine summation here is until i = m. Let us consider a typical term #; of the last
sum. It equals to (x — y)’ /z' Zk z(Ra,+| Yf)(k)(y)(y — a2]+23+1)k_"/(k — 1)!. Arguing as
above, we obtain |t;| < |x — y|'/il- e Y ;18 le]/(k — i)l < eslx — y|'1’7"/il. By that,
Yo til < Cé’e28|x — y|?, which completes the proof. [J
Remarks. 1. One can enumerate all functions from (e, 1,007, U (ex,2 j,s)lfigf;’ﬁi:] and the
corresponding functionals 7 into a biorthogonal sequence ( f,, 1)~ ; in such way that for some

increasing sequences (N,)%° ol (qp) ~o the sum Sy, (f) = Zi’i M (f) - fu coincides with

Tq” fonl;,forl < j < 2P. Yet, the sequence (f,,n,)me, Will not have the basis property
in the space E(K(A)). Indeed, let F € C°°[0, 1] solve the Borel problem for the sequence
(qn'l; )22, that is F4)(0) = g,!l,%" forn € Ng and F®(0) = 0 for k # g,. Let
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f = Flgw- Then | f — Sy, (Hlo = IRy FUpI = 307, fROK k! — | £1,) — fO)] >
1 —|f{p) — f(0)]. The last expression has a limit 1 as p — 00, so Sy (f) does not converge to
Sin |- o.

For a basis in the space £(K (A)), see [6].

2. As concerns the paper by Jonsson [9], we note that natural triangulations of the set K (A)
are given by the sequence Fy = {l; 5, 1 < i < 2°}, s > 0. The regularity conditions discussed
in [9] are reduced in this case to (6) and

.
liminf - > 0.
§—>00

®)

N

Thus, provided these conditions, the expansion of f € £P(K (A)) with respect to Jonsson’s
interpolating system converges, at leastin | - |, to f, by Proposition 2 in [9]. It is interesting to
check the corresponding convergence in topology given by the norm || - || ,. At the same time it
is essential for the proof of by Proposition 2 [9] that the diameters of neighboring triangulations
are comparable, which is (8) for Cantor-type sets. Our construction can be applied to any “small”
Cantor set with arbitrary fast decrease of the sequence (/5)52). The basis problem for the space
EP(K (A)) in the case of “large” Cantor set with I/ hy — 00 is open.
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